View of Camera
· First person
· В сцену добавим объект капсулы и для нее сделаем дочерний элемент камеру
· На капсуле должен быть компонент Character Controller и наш скрипт
[image:][image:][image:]
· Для камеры создадим скрипт. В инспекторе у скрипта назначим поле Player Body → перетащим саму Capsule.
· Скрипт который отвечает за передвижение, обзор и прыжок
using UnityEngine;
[RequireComponent(typeof(CharacterController))]
public class FirstPersonCamera : MonoBehaviour
{
 [Header("Movement")]
 public float speed = 6f;

 [Header("Jump & Gravity")]
 public float gravity = -9.81f; // должна быть отрицательной
 public float jumpHeight = 1.5f;
 public float groundStick = -2f; // «прижатие» к земле

 [Header("Mouse Look")]
 public Transform cameraTransform;
 public float mouseSensitivity = 120f;
 public bool lockCursor = true;

 private CharacterController cc;
 private float xRot = 0f;
 private Vector3 velocity; // храним только Y, X/Z даём через input
 private bool grounded;

//Находим и сохраняем компонент CharacterController на объекте.
//Если поле cameraTransform пустое в инспекторе, ищем вложенную камеру автоматически.
 void Awake()
 {
 cc = GetComponent<CharacterController>();
 if (!cameraTransform)
 {
 var cam = GetComponentInChildren<Camera>();
 if (cam) cameraTransform = cam.transform;
 }
 }

//Здесь мы прячем и блокируем курсор в центре экрана (чтобы мышь управляла только камерой).
 void Start()
 {
 if (lockCursor) Cursor.lockState = CursorLockMode.Locked;
 }

//Look(); → обработка мыши (вращение камеры и тела игрока).
//MoveAndJump(); → обработка ввода клавиш (WASD + Space) и применение движения/гравитации.
 void Update()
 {
 Look();
 MoveAndJump();
 }

 void Look()
 {
 float mx = Input.GetAxisRaw("Mouse X") * mouseSensitivity * Time.deltaTime;
 float my = Input.GetAxisRaw("Mouse Y") * mouseSensitivity * Time.deltaTime;

 xRot = Mathf.Clamp(xRot - my, -90f, 90f);
 if (cameraTransform) cameraTransform.localRotation = Quaternion.Euler(xRot, 0f, 0f);
 transform.Rotate(Vector3.up * mx);
 }

 void MoveAndJump()
 {
 // 1) Горизонталь (WASD)
 float x = Input.GetAxisRaw("Horizontal");
 float z = Input.GetAxisRaw("Vertical");
 Vector3 planar = (transform.right * x + transform.forward * z);
 if (planar.sqrMagnitude > 1f) planar.Normalize();

 // 2) Прыжок: решаем до Move, но «землю» сверим ПОСЛЕ Move
 if (Input.GetKeyDown(KeyCode.Space) && grounded)
 {
 // v = sqrt(2 * g * h) (g < 0)
 velocity.y = Mathf.Sqrt(jumpHeight * -2f * gravity);
 }

 // 3) Гравитация (каждый кадр)
 velocity.y += gravity * Time.deltaTime;

 // 4) Один общий Move
 Vector3 motion = planar * speed + new Vector3(0f, velocity.y, 0f);
 cc.Move(motion * Time.deltaTime);

 // 5) После Move узнаём «землю» корректно
 grounded = (cc.collisionFlags & CollisionFlags.Below) != 0;

 // 6) Стабильное стояние на земле
 if (grounded && velocity.y < 0f) velocity.y = groundStick;
 }

}
Для чего нужен CharacterController
1. Движение без физики Rigidbody
a) Он позволяет перемещать объект вручную через метод:
controller.Move(Vector3 movement);
b) При этом он сам обрабатывает столкновения со стенами, полом и препятствиями.
2. Столкновения и "обход углов"
a) У CharacterController есть форма капсулы (капсула-коллайдер).
b) Он скользит по поверхностям, не переворачивается и не падает набок, как Rigidbody.
3. Проверка, стоит ли персонаж на земле
a) Через свойство controller.isGrounded можно узнать, касается ли капсула земли.
b) Это используют для прыжка.
4. Простая настройка размеров персонажа
a) Height — рост персонажа (высота капсулы).
b) Radius — ширина (радиус капсулы).
c) Center — смещение центра.
d) Step Offset — высота ступеньки, на которую персонаж может «забраться».
e) Slope Limit — максимальный угол наклонной поверхности, по которой можно идти.
f) Skin Width — «толщина» для сглаживания коллизий.
5. Идеален для FPS/TPS игр
a) Он не реагирует на физические силы (AddForce и т.д.).
b) Но зато идеально подходит для управляемого движения (WASD, прыжки, бег).
· Third Person
Для начала нужно выставить камеру так чтоб он смотрел на героя (за которым будет следить с нужного ракурса)
После на герое должне быть компонент Character Controller
И следующий скрипт
Первый вариант скрипты перемещения
using UnityEngine;

public class ThirdPersonController : MonoBehaviour
{
 [Header("Movement")]
 public float speed = 5f;
 public float rotationSpeed = 720f; // скорость поворота тела

 [Header("Camera Follow")]
 public Transform cameraTransform; // сюда перетащи Main Camera
 public Vector3 cameraOffset = new Vector3(0, 3, -5); // смещение камеры позади игрока
 public float cameraSmooth = 5f; // сглаживание камеры

 [Header("Jump & Gravity")]
 public float gravity = -9.81f;
 public float jumpHeight = 1.5f;

 private CharacterController controller;
 private Vector3 velocity;
 private bool isGrounded;

 void Awake()
 {
 controller = GetComponent<CharacterController>();
 }

 void Update()
 {
 HandleMovement();
 HandleCamera();
 }

 void HandleMovement()
 {
 // Проверяем "на земле" ли игрок
 isGrounded = controller.isGrounded;
 if (isGrounded && velocity.y < 0f) velocity.y = -2f;

 // Ввод с клавиатуры (WASD)
 float x = Input.GetAxis("Horizontal");
 float z = Input.GetAxis("Vertical");

 Vector3 move = new Vector3(x, 0, z);

 if (move.magnitude >= 0.1f)
 {
 // Направление относительно камеры
 float targetAngle = Mathf.Atan2(move.x, move.z) * Mathf.Rad2Deg + cameraTransform.eulerAngles.y;
 float angle = Mathf.SmoothDampAngle(transform.eulerAngles.y, targetAngle, ref rotationSpeed, 0.1f);
 transform.rotation = Quaternion.Euler(0f, angle, 0f);

 Vector3 moveDir = Quaternion.Euler(0f, targetAngle, 0f) * Vector3.forward;
 controller.Move(moveDir.normalized * speed * Time.deltaTime);
 }

 // Прыжок
 if (Input.GetKeyDown(KeyCode.Space) && isGrounded)
 {
 velocity.y = Mathf.Sqrt(jumpHeight * -2f * gravity);
 }

 // Применяем гравитацию
 velocity.y += gravity * Time.deltaTime;
 controller.Move(velocity * Time.deltaTime);
 }

 void HandleCamera()
 {
 if (!cameraTransform) return;

 Vector3 desiredPosition = transform.position + cameraOffset;
 cameraTransform.position = Vector3.Lerp(cameraTransform.position, desiredPosition, cameraSmooth * Time.deltaTime);
 cameraTransform.LookAt(transform.position + Vector3.up * 1.5f); // смотреть чуть выше центра
 }
}
Второй пример скрипта передвижение и поворот камеры
using UnityEngine;

public class ThirdPersonController : MonoBehaviour
{
 [Header("Movement")]
 public float speed = 5f;
 public float jumpHeight = 1.5f;
 public float gravity = -9.81f;

 [Header("Camera Settings")]
 public Transform cameraTransform; // Сюда перетащи Main Camera
 public float mouseSensitivity = 3f;
 public float cameraDistance = 5f; // расстояние камеры
 public float cameraHeight = 2f; // высота камеры
 public float minY = -30f; // ограничение обзора вниз
 public float maxY = 60f; // ограничение обзора вверх

 private CharacterController controller;
 private Vector3 velocity;
 private float rotX = 0f; // угол по вертикали
 private float rotY = 0f; // угол по горизонтали

 void Awake()
 {
 controller = GetComponent<CharacterController>();
 if (!cameraTransform)
 {
 var cam = Camera.main;
 if (cam) cameraTransform = cam.transform;
 }
 }

 void Start()
 {
 Cursor.lockState = CursorLockMode.Locked;
 }

 void Update()
 {
 HandleCamera();
 HandleMovement();
 }

 void HandleCamera()
 {
 // движение мышью
 rotX -= Input.GetAxis("Mouse Y") * mouseSensitivity;
 rotY += Input.GetAxis("Mouse X") * mouseSensitivity;

 // ограничение по вертикали
 rotX = Mathf.Clamp(rotX, minY, maxY);

 // позиция камеры позади игрока
 Quaternion rotation = Quaternion.Euler(rotX, rotY, 0);
 Vector3 offset = rotation * new Vector3(0, cameraHeight, -cameraDistance);
 cameraTransform.position = transform.position + offset;

 // камера всегда смотрит на игрока
 cameraTransform.LookAt(transform.position + Vector3.up * 1.5f);
 }

 void HandleMovement()
 {
 bool grounded = controller.isGrounded;
 if (grounded && velocity.y < 0) velocity.y = -2f;

 // ввод с клавиатуры
 float h = Input.GetAxisRaw("Horizontal");
 float v = Input.GetAxisRaw("Vertical");
 Vector3 inputDir = new Vector3(h, 0, v).normalized;

 if (inputDir.magnitude >= 0.1f)
 {
 // направление относительно камеры
 float targetAngle = Mathf.Atan2(inputDir.x, inputDir.z) * Mathf.Rad2Deg + rotY;
 Vector3 moveDir = Quaternion.Euler(0, targetAngle, 0) * Vector3.forward;
 controller.Move(moveDir.normalized * speed * Time.deltaTime);

 // поворот персонажа в сторону движения
 transform.rotation = Quaternion.Euler(0, targetAngle, 0);
 }

 // прыжок
 if (Input.GetKeyDown(KeyCode.Space) && grounded)
 {
 velocity.y = Mathf.Sqrt(jumpHeight * -2f * gravity);
 }

 // гравитация
 velocity.y += gravity * Time.deltaTime;
 controller.Move(velocity * Time.deltaTime);
 }
}

1. Awake()
a) Вызывается один раз, когда объект создаётся/активируется (ещё до того, как начнётся игра).
b) Используется для:
i. поиска компонентов (GetComponent<>()),
ii. инициализации ссылок,
iii. подготовки переменных.
c) Срабатывает даже если объект выключен в сцене.
2. Start()
a) Вызывается один раз, но только перед первым кадром Update().
b) Используется для:
i. установки начальных параметров,
ii. настройки камеры, курсора, UI,
iii. запуска анимаций, звуков и т.п.
c) Срабатывает только если объект включён в сцене.
3. Update()
a) Вызывается каждый кадр.
b) Используется для:
i. обработки ввода (WASD, мышь, прыж
ii. движения,
iii. логики игры.

Animation Control
Для объекта я делаю двке анимации через редактор Animstor
[image:]
Далее могу задать логику чередования анимации через Controller
[image:]

[bookmark: _GoBack]И при запуске симуляции две анимации будут чередоваться
Теперь хотелось прописать логику смены анимации
1) Откройте Animator и добавьте параметр:
a) Тип Trigger (назовём Switch) — самый простой для разового переключения.
[image:]
2) На переходе anim_first → anim_second:
a) Снимите галочку Has Exit Time.
[image:]
b) В Conditions добавьте Switch.
[image:]
c) По желанию уменьшайте Transition Duration (например 0–0.1).
3) (Опционально) На переходе anim_second → anim_first:
a) Так же как сделали выше
4) Повесьте этот скрипт на любой объект в сцене (например, на сам Canvas или объект с Animator).
using UnityEngine;

public class AnimSwitcher : MonoBehaviour
{
 public Animator animator; // перетащи сюда Animator твоего объекта
 public string triggerName = "Switch";

 public void Switch()
 {
 if (animator) animator.SetTrigger(triggerName);
 }
}

Привязка к UI Button
[image:]
[image:]
1. Убедитесь, что в сцене есть Canvas, Button и EventSystem (создаётся автоматически).
2. Выдели Button → в инспекторе в разделе On Click () нажми +.
[image:]
3. Перетащи объект со скриптом AnimSwitcher в поле.
[image:]
4. В выпадающем списке выбери метод AnimSwitcher → Switch().
[image:]
И на самом объекте на котором находиться скрипт нужно указать следующее
[image:]
image7.png
o TR =

Iil anim_first -> anim_second
& 1 AnimatorTransitionBase

Transitions

anim_first -> anim_second

-
da
anim_first -> anim_second

Has Exit Time
- Settings

o, e, il o,

S

Conditions
~ Switch -

image8.png
F—
Conditions

image9.png
) Canvas
» @ Button
D EventSystem

image10.png
Width Height

800 400

Anchors

Min X0 Yo

Max X0 Yo
Pivot X 05 Y o5
Rotation X 15455 Y 0 Zo
Scale & X 0.014872¢ Y 0014872¢ Z 0,014
® v Canvas e
Render Mode World Space

Event Camera = Camera (Camera)

Sorting Layer Default

Order in Layer 0

Additional Shader Channels TexCoord, Normal, Tangent

Vertex Color Always In Gar
a Keeb vertex color in Gamma space to allow aamma to linear color space

image11.png
® v Button

Interactable

Transition
Target Graphic
Normal Color
Highlighted Color
Pressed Color
Selected Color
Disabled Color
Color Multiplier
Fade Duration

Navigation

On Click ()

Runtime Only ~
B Button (Anim @

e

2

Color Tint v
1=Button (Image) [}
I
I
.
I
I
L 1

o1

Automatic v

Visualize
AnimSwitcher.Switch v

image12.png
BButton (Anim ©

image13.png
AnimSwitcher.Switch

image14.png
* B v Anim Switcher (Script)

o

ipt B AnimSwitcher ®
Animator > Cylinder (Animator) ®
Trigger Name Switch

image1.png

image2.png
v (@ Capsule
& Main Camera

image3.png
v B v First Person Camera (Script)

B FirstPersonCamera

Movement
Speed 6

Jump & Gravity
Gravity -9.81
Jump Height 15
Ground Stick -2

Mouse Look
Camera Transform 2 Main Camera (Transform)

Mouse Sensitivity 100
Lock Cursor v

image4.png
v anim_first

anim_second

Create New Clip..

image5.png

image6.png

