
[image: IMG_256][image: IMG_256] [image: IMG_256]		[image: IMG_256]		

Informatica Aplicata

Dezvoltarea jocurilor video

[bookmark: _GoBack]Learning Unit 4:
Pugaci Diana
pugaci.diana@gmail.com

Programarea comportamentului obiectelor folosind C# în Unity

Cuprins
1. Elemente fundamentale ale limbajului C# în contextul Unity	5
2. Crearea și atașarea scripturilor la obiectele din scenă	5
3. Funcțiile Start(), Update(), FixedUpdate() – ciclul de viață al unui obiect	6
1) Start()	7
2) Update()	7
3) FixedUpdate()	8
4) LateUpdate()	8
5) Awake()	9
6) OnEnable() / OnDisable()	9
7) OnDestroy()	9
8) Funcții pentru coliziuni și triggere:	10
Comparație între cele 3 funcții principale:	11
Collider + Rigidbody:	11
One of the objects must have Riggidbody	12
4. Interacțiunea dintre cod și componentele obiectelor prin GetComponent	12
T numeComponenta = GetComponent<T>();	13
2. Activarea sau dezactivarea unui collider	13
3. Aplicarea unei forțe cu Rigidbody	13
4. Activarea unei animații (Animator)	14
5. Structurarea logicii de joc și bune practici de programare	14

	Tema 4: Programarea comportamentului obiectelor folosind C# în Unity
Rezultatele învățării preconizate a fi atinse: RÎ2; RÎ6; RÎ7

	Cunoștințe / unități de conținut
	Abilități
	Responsabilitate și autonomie

	Termeni cheie:
C#, script, funcții, componentă, execuție, debugging.
Unități de conținut:
Subteme:
· Elemente fundamentale ale limbajului C# în contextul Unity.
· Crearea și atașarea scripturilor la obiectele din scenă.
· Funcțiile Start(), Update(), FixedUpdate() – ciclul de viață al unui obiect.
· Interacțiunea dintre cod și componentele obiectelor prin GetComponent.
· Structurarea logicii de joc și bune practici de programare.
Activități de laborator:
· Scrierea unui script C# care rotește un obiect.
· Controlarea poziției unui obiect prin tastatură.
· Aplicarea unor modificări de culoare și transformări prin cod.
· Crearea unui script reutilizabil pentru mai multe obiecte.
· Debugging cu Debug.Log() și identificarea erorilor de execuție.
	✓ Se scriu scripturi C# de bază care controlează comportamentul obiectelor în timp real.
✓ Se utilizează funcțiile Unity Start(), Update(), FixedUpdate() pentru controlul logicii de joc.
✓ Se aplică metoda GetComponent() pentru a accesa și modifica componentele obiectelor.
✓ Se controlează mișcarea, rotația și transformările obiectelor prin cod.
✓ Se creează scripturi reutilizabile care pot fi aplicate la mai multe GameObject-uri.
✓ Se aplică tehnici de debugging pentru identificarea și corectarea erorilor în timpul execuției.
	✓ Manifestează atenție la structura și lizibilitatea codului scris.
✓ Își asumă responsabilitatea pentru testarea și depanarea comportamentului obiectelor.
✓ Urmează bune practici de organizare a codului și comentarii explicative.
✓ Colaborează cu colegii pentru a integra comportamente diverse într-o scenă comună.
✓ Revizuiește codul în mod critic pentru a îmbunătăți claritatea și funcționalitatea.

1. [bookmark: _Toc12826]Elemente fundamentale ale limbajului C# în contextul Unity
C# este un limbaj de programare orientat pe obiect, dezvoltat de Microsoft. Unity îl folosește pentru:
· logica de joc
· controlul interacțiunii jucătorului
· mișcarea obiectelor
· coliziuni, UI, inteligență artificială etc.

2. [bookmark: _Toc31147]Crearea și atașarea scripturilor la obiectele din scenă
Pași practici:
· Click dreapta în Assets → Create → C# Script
· Denumește scriptul (ex: PlayerMovement)
· Atașează-l la un GameObject:
Trage scriptul direct peste obiect în scenă
Sau selectează GameObject → Add Component → Type script 	name
Exemplu de script de mișcare simplă:
using UnityEngine;

public class PlayerMovement : MonoBehaviour
{
 public float speed = 5f;

 void Update()
 {
 // Mișcare stânga-dreapta
 float move = Input.GetAxis("Horizontal");
 transform.Translate(Vector3.right * move * speed * Time.deltaTime);
 }
}
· Update() se execută în fiecare frame.
· Input.GetAxis("Horizontal") citește tastele A/D sau săgețile.
· Translate() mută obiectul în spațiu.
3. [bookmark: _Toc31038]Funcțiile Start(), Update(), FixedUpdate() – ciclul de viață al unui obiect
	Funcție
	Când este apelată?
	Când o folosim?

	Start()
	O singură dată, la începutul scenei
	Inițializare: poziții, variabile

	Update()
	La fiecare frame (dependent de FPS)
	Mișcare, input de la jucător, UI

	FixedUpdate()
	La intervale constante (fizică, rigidbody)
	Forțe fizice, coliziuni, gravitație

	OnTriggerEnter()
	Când un obiect intră într-un trigger collider
	Detectare zone, intrări în trigger

Ce este „ciclul de viață” al unui GameObject?
Este ordinea logică în care Unity apelează automat funcții predefinite (metode speciale) pe parcursul existenței unui GameObject în scenă.
Aceste funcții controlează:
· inițializarea
· logica de joc continuă
· interacțiunile cu fizica
· coliziunile și trigger-ele
· distrugerea obiectului
1) [bookmark: _Toc1375]Start()
→ Se execută o singură dată, la începutul scenei, când GameObject-ul devine activ.
Scop:
inițializarea valorilor
obținerea de referințe (cu GetComponent)
setări de pornire
void Start()
{
 Debug.Log("Obiectul a fost activat.");
 speed = 5f;
 rb = GetComponent<Rigidbody>();
}
Important: Start() NU se execută dacă obiectul este inactiv când începe scena.
2) [bookmark: _Toc22368]Update()
→ Se execută la fiecare frame (de ex. 60 ori/secundă dacă FPS = 60).
Scop:
citirea inputurilor
animații
actualizări UI sau scor
void Update()
{
 if (Input.GetKeyDown(KeyCode.Space))
 {
 Jump();
 }
}
Nu folosi pentru logică fizică! Poate duce la rezultate inconsistente.
3) [bookmark: _Toc31070]FixedUpdate()
→ Se execută la intervale regulate, sincronizat cu sistemul fizic.
Scop:
aplicarea de forțe fizice
lucrul cu Rigidbody
simulări bazate pe timp fizic
void FixedUpdate()
{
 float move = Input.GetAxis("Horizontal");
 rb.MovePosition(rb.position + Vector3.right * move * speed * Time.fixedDeltaTime);
}
Folosește mereu Time.fixedDeltaTime în loc de Time.deltaTime aici.
4) [bookmark: _Toc6609]LateUpdate()
→ Se execută după ce Update() a fost apelat, în fiecare frame.
Scop:
urmărirea camerei după mișcarea obiectului
repoziționări post-animație
logica dependentă de finalul unui frame
void LateUpdate()
{
 transform.position = player.position + offset;
}
Ideală pentru camere sau UI care trebuie să „reacționeze” la mișcări deja procesate.
5) [bookmark: _Toc31199]Awake()
→ Se execută PRIMA, înainte de Start() – o singură dată.
Scop:
inițializare de bază
setarea valorilor comune pentru mai multe obiecte
se execută chiar și dacă obiectul este inactiv
void Awake()
{
 Debug.Log("Se execută înainte de Start()");
}
6) [bookmark: _Toc22383]OnEnable() / OnDisable()
→ Se execută când GameObject-ul devine activ / inactiv.
Scop:
activarea/dezactivarea comportamentului
subscribe/unsubscribe la evenimente
void OnEnable()
{
 Debug.Log("Obiectul a fost activat.");
}
void OnDisable()
{
 Debug.Log("Obiectul a fost dezactivat.");
}
7) [bookmark: _Toc16325]OnDestroy()
→ Se execută o singură dată, când GameObject-ul este distrus.
Scop:
salvarea scorului
eliberarea resurselor
dezabonarea de la evenimente
void OnDestroy()
{
 Debug.Log("Obiectul a fost distrus!");
}
8) [bookmark: _Toc21795]Funcții pentru coliziuni și triggere:
a) OnCollisionEnter(Collision other)
→ se execută la impact cu alt obiect cu collider și Rigidbody
void OnCollisionEnter(Collision col)
{
 Debug.Log("Am lovit: " + col.gameObject.name);
}

b) OnTriggerEnter(Collider other)
→ se execută când intrăm într-un trigger activ
void OnTriggerEnter(Collider other)
{
 if (other.CompareTag("Bonus"))
 {
 Destroy(other.gameObject);
 }
}
Necesită ca unul dintre obiecte să aibă IsTrigger bifat și Rigidbody.
Recapitulare: Ordinea apelării funcțiilor Unity
Awake()
OnEnable()
Start()
Update()
LateUpdate()
OnDisable()
OnDestroy()

[bookmark: _Toc30108] Comparație între cele 3 funcții principale:
	Funcție
	Când rulează
	Când se folosește

	Update()
	La fiecare frame
	input, animații, logica generală

	FixedUpdate()
	La intervale fixe
	fizică, forțe, coliziuni

	LateUpdate()
	După Update()
	cameră, UI, repoziționări post-fizică

[bookmark: _Toc20328]Collider + Rigidbody:
	Method
	Cand apeleaza

	OnCollisionEnter(Collision col)
	In a collision

	OnCollisionStay(Collision col)
	While the objects were toughing

	OnCollisionExit(Collision col)
	When objects stop touching

Collider with Is Trigger = true:
	Method
	Cand apeleaza

	OnCollisionEnter(Collision col)
	When entering the zone-trigger

	OnCollisionStay(Collision col)
	While the object is in the trigger

	OnCollisionExit(Collision col)
	When leaving the zone-trigger

[bookmark: _Toc14730]One of the objects must have Riggidbody
UI/Mouse
	Method
	When Called

	OnMouseEnter()
	The cursor hovers over the object(with collider)

	OnMouseExit()
	The cursor has left the object

	OnMouseDown()
	The cursor clicks on the object

	OnMouseUp()
	The cursor released

	OnMouseDrag()
	The mouse is held

4. [bookmark: _Toc22785]Interacțiunea dintre cod și componentele obiectelor prin GetComponent
Permite accesarea unei componente (ex: Renderer, Collider, Rigidbody) din codul atașat unui GameObject.
void Start()
{
 Renderer rend = GetComponent<Renderer>();
 rend.material.color = Color.red;
}
→ Schimbă culoarea materialului GameObject-ului curent în roșu, la pornire.

GetComponent<T>() este o metodă generică în Unity care permite accesarea oricărei componente atașate unui GameObject.
Folosim GetComponent când vrem să:
· citim valori din componente
· modificăm comportamente (ex: culoare, sunet, fizică)
· accesăm metode specifice ale unui component (ex: Play(), SetTrigger())

Sintaxă generală:
[bookmark: _Toc21430]T numeComponenta = GetComponent<T>();
unde T este tipul componentei (ex: Rigidbody, AudioSource, Renderer etc.)

Example:
1. Redarea unui sunet (AudioSource)
void Start()
{
 AudioSource audio = GetComponent<AudioSource>();
 audio.Play();
}
Important: Obiectul trebuie să aibă deja un AudioSource și un clip atașat.
2. [bookmark: _Toc16442]Activarea sau dezactivarea unui collider
void OnTriggerEnter(Collider other)
{
 if (other.CompareTag("Player"))
 {
 BoxCollider col = GetComponent<BoxCollider>();
 col.enabled = false;
 }
}
Utilizare: pentru a dezactiva un trigger după ce a fost folosit.
3. [bookmark: _Toc27889]Aplicarea unei forțe cu Rigidbody
void Start()
{
 Rigidbody rb = GetComponent<Rigidbody>();
 rb.AddForce(Vector3.up * 300f);
}
Utilizare: pentru salt, explozie, lansare.
4. [bookmark: _Toc14196]Activarea unei animații (Animator)
void Update()
{
 if (Input.GetKeyDown(KeyCode.Space))
 {
 Animator anim = GetComponent<Animator>();
 anim.SetTrigger("Jump");
 }
}
Atenție: în Animator trebuie definit un Trigger numit exact „Jump”.
5. [bookmark: _Toc12200]Structurarea logicii de joc și bune practici de programare
Bune practici recomandate:
Folosește denumiri clare pentru clase și metode:
EnemySpawner, CollectCoin(), ResetLevel()

Separă responsabilitățile în scripturi diferite:
PlayerMovement.cs – doar mișcare
GameManager.cs – scor, resetare nivel
EnemyAI.cs – comportamentul inamicilor

Comentează clar logica:
// Verifică dacă jucătorul este pe sol
bool isGrounded = Physics.Raycast(transform.position, Vector3.down, 1.1f);

Evită cod duplicat – extrage metode:
void TakeDamage(int amount)
{
 health -= amount;
 if (health <= 0) Die();
}
Folosește public doar când este necesar – altfel private cu [SerializeField]:
[SerializeField] private float jumpForce = 8f;

Bibliografie recomandata
1. Hocking, J. (2023). Learning C# by Developing Games with Unity 2023. 8th ed. Packt Publishing
2. Thorn, A. (2023). Mastering Unity Scripting. 2nd ed. Packt Publishing.
3. Unity Technologies (2025). Unity Scripting API. Disponibil la: https://docs.unity3d.com/ScriptReference/
4. Unity Technologies (2025). Physics and Rigidbody Guide. Disponibil la: https://docs.unity3d.com/Manual/PhysicsSection.html
5. Unity Technologies (2025). Colliders and Triggers. Disponibil la: https://docs.unity3d.com/Manual/CollidersOverview.html
6. Unity Technologies (2025). Animator Component and Triggers. Disponibil la: https://docs.unity3d.com/Manual/Animator.html
7. Unity Technologies (2025). Debugging and Debug.Log(). Disponibil la: https://docs.unity3d.com/ScriptReference/Debug.html

2

image4.png
nvatam acasa,
excelam global!

image1.png
MINISTERUL EDUCATIEL
$1 CERCETARILL
AL REPUBLICI] MOLDOVA

image2.png

image3.jpeg

