
[image: IMG_256] [image: IMG_256] [image: IMG_256] [image: IMG_256]

[bookmark: _GoBack]Informatica Aplicata

Dezvoltarea jocurilor video
Learning Unit 5:
Pugaci Diana
pugaci.diana@gmail.com

Controlul personajelor și interacțiunea obiectelor în scenă

Cuprins
I. Implementarea controalelor prin tastatură și mouse în jocuri 3D	3
Tipuri de control al personajului în jocuri 3D	4
1. First-person	4
2. Third-person over-the-shoulder (TPS)	9
3. Third-person fixă (camera statică)	10
4. Top-down / Isometric	12
5. Tank Controls	13
6. Point and Click (3D)	14
II. Programarea mișcărilor personajului și a camerei.	15
1. Mișcarea personajului	15
2. Mișcarea camerei	17
III. Detectarea coliziunilor și activarea declanșatorilor (triggers).	19
Ce înseamnă „coliziune” și „trigger” în Unity?	19
Deschiderea unei uși la apropiere	22
Capcană care cade	22
Colectare de obiect	23
Cum configurăm un trigger în Inspector:	23
1. Objectul A (ex: zonă de activare):	23
2. Objectul B (ex: jucătorul):	23
Best practices	24
Tipuri de funcții de trigger	24
IV. Crearea de interacțiuni între obiecte în funcție de input.	24
Ce înseamnă "interacțiune în funcție de input"?	24
Exemplu simplu: Apăsare E pentru a deschide ușa	25
Variante de detecție a obiectului:	26
V. Utilizarea tag-urilor și layer-elor pentru gestionarea interacțiunii.	27
Ce sunt tag-urile în Unity?	27
Cum adaugi un tag în Unity:	27
Best practices cu tag-uri	27
Ce sunt layer-ele în Unity?	28
Exemple de utilizare Layer:	28
2. Filtrarea coliziunilor în proiect	28
3. Camere care văd doar anumite layer-e	29

	Tema 5: Controlul personajelor și interacțiunea obiectelor în scenă
Rezultatele învățării preconizate a fi atinse: RÎ4; RÎ6; RÎ7

	Cunoștințe / unități de conținut
	Abilități
	Responsabilitate și autonomie

	Termeni cheie:
input, mișcare, coliziune, declanșator (trigger), tag, layer.
Unități de conținut:
Subteme:
· Implementarea controalelor prin tastatură și mouse în jocuri 3D.
· Programarea mișcărilor personajului și a camerei.
· Detectarea coliziunilor și activarea declanșatorilor (triggers).
· Crearea de interacțiuni între obiecte în funcție de input.
· Utilizarea tag-urilor și layer-elor pentru gestionarea interacțiunii.
Activități de laborator:
· Crearea unui sistem de control pentru un personaj 3D (WASD + mouse look).
· Simularea unei interacțiuni: deschiderea unei uși la apropiere.
· Utilizarea OnCollisionEnter și OnTriggerEnter.
· Etichetarea obiectelor și filtrarea comportamentului prin tag-uri.
· Mișcarea camerei pentru a urmări personajul în scenă.
	✓ Se creează controale funcționale pentru mișcarea personajului în medii 3D folosind tastatura și mouse-ul.
✓ Se programează mișcarea camerei pentru a urmări personajul în timp real.
✓ Se detectează coliziuni și se declanșează acțiuni folosind funcții precum OnTriggerEnter.
✓ Se etichetează obiectele cu tag-uri și se utilizează pentru a filtra comportamentele în scenă.
✓ Se implementează interacțiuni simple (ex. deschiderea ușilor, activarea obiectelor) bazate pe apropierea personajului sau input-ul jucătorului.
	✓ Este atent la coerența și responsivitatea sistemului de control creat.
✓ Testează și ajustează interacțiunile pentru o experiență de joc fluidă.
✓ Revizuiește implementările pentru a respecta bune practici în control și coliziuni.
✓ Colaborează activ cu colegii pentru a integra controlul și interacțiunea în proiecte comune.
✓ Manifestă inițiativă în propunerea de soluții pentru îmbunătățirea interacțiunilor.

I. [bookmark: _Toc11521]Implementarea controalelor prin tastatură și mouse în jocuri 3D
Această componentă este esențială în jocurile 3D pentru a permite jucătorului să controleze personajul și să navigheze liber prin scenă. Se referă la:
· deplasarea personajului cu tastatura (WASD)
· rotirea vederii cu mouse-ul
· controlul camerei din perspectiva jucătorului (first person) sau din spatele personajului (third person)

Concept cheie: Sistemul de Input în Unity
Unity oferă două sisteme de input:
· Input Manager clasic (Input.GetAxis, Input.GetKey) – simplu, ideal pentru începători.
· Input System nou – mai flexibil, dar mai complex. În acest curs ne concentrăm pe sistemul clasic.

Exemplu: Controlul unui personaj din perspectivă first-person
Vom crea un First-Person Controller cu:
· mișcare (W, A, S, D)
· privire cu mouse-ul (sus-jos, stânga-dreapta)
[bookmark: _Toc14503]Tipuri de control al personajului în jocuri 3D
	Tip de control
	Descriere
	Jocuri celebre

	First-person
	Camera este ochiul jucătorului
	Minecraft, Half-Life

	Third-person over-the-shoulder
	Camera urmărește din spate și puțin lateral
	The Last of Us, Tomb Raider

	Third-person fixed
	Camera este fixă sau se schimbă pe zone
	Resident Evil (clasic), God of War (vechi)

	Top-down / isometric
	Perspectivă de sus
	Diablo, Hades

	Tank controls
	Direcția personajului este fixă, se rotește pe loc
	Resident Evil 1, Silent Hill

	Point and Click 3D
	Jucătorul face clic în scenă, iar personajul merge acolo
	Broken Sword 3, Telltale Games

1. [bookmark: _Toc20657]First-person
· Control: WASD + Mouse pentru privire
· Camera este "capul" jucătorului
· Exemple: Minecraft, Call of Duty
Folosit în jocuri FPS, horror sau explorare
	Joc
	Caracteristici ale controlului

	Minecraft
	Mișcare cu WASD, privire cu mouse, sărit cu Space, inventar cu E

	Half-Life / Half-Life: Alyx
	Control fluid, interacțiune cu mediu (uși, butoane)

	Call of Duty
	FPS rapid, cu alergare, țintire, salturi, ghemuire

	Outlast
	Mișcare cu WASD, interacțiuni cu uși, obiecte, ascundere

[image: IMG_256]
Figure 1 Controler Minecraft
[image: IMG_256]
Figure 2 Half-Life / Half-Life: Alyx

[image: IMG_256]
Figure 3 Call of Duty

[image: IMG_256]
Figure 4 Outlast

Elemente de control al personajului
1. Deplasare (WASD)
W – înainte
S – înapoi
A – stânga
D – dreapta
float h = Input.GetAxis("Horizontal");
float v = Input.GetAxis("Vertical");
Vector3 miscare = transform.right * h + transform.forward * v;
controller.Move(miscare * viteza * Time.deltaTime);

2. Privire cu mouse-ul (Mouse Look)
Mouse stânga/dreapta → rotirea corpului jucătorului
Mouse sus/jos → rotirea camerei (privirea)
float mouseX = Input.GetAxis("Mouse X") * sensibilitate * Time.deltaTime;
float mouseY = Input.GetAxis("Mouse Y") * sensibilitate * Time.deltaTime;

transform.Rotate(Vector3.up * mouseX);
rotatieVerticala -= mouseY;
cameraTransform.localRotation = Quaternion.Euler(rotatieVerticala, 0f, 0f);
Se folosește Clamp() pentru a limita mișcarea verticală (nu vrem să ne răsucim capul 360°).

3. Săritura (Space)
Necesită verificare dacă jucătorul este pe sol (altfel poate „zbura”)
public float gravitate = -9.81f;
public float fortaSalt = 3f;
private float vitezaVerticala = 0f;
private bool estePeSol;

void Update()
{
 estePeSol = controller.isGrounded;

 if (estePeSol && Input.GetButtonDown("Jump"))
 vitezaVerticala = Mathf.Sqrt(fortaSalt * -2f * gravitate);

 vitezaVerticala += gravitate * Time.deltaTime;

 Vector3 miscare = transform.right * h + transform.forward * v;
 miscare.y = vitezaVerticala;

 controller.Move(miscare * Time.deltaTime);
}

4. Alergare (Shift)
public float vitezaNormala = 6f;
public float vitezaAlergare = 12f;

void Update()
{
 float viteza = Input.GetKey(KeyCode.LeftShift) ? vitezaAlergare : vitezaNormala;
 Vector3 miscare = transform.right * h + transform.forward * v;
 controller.Move(miscare * viteza * Time.deltaTime);
}

5. Ghemuire (Ctrl)

if (Input.GetKeyDown(KeyCode.LeftControl))
 controller.height = 1.0f; // se micșorează

if (Input.GetKeyUp(KeyCode.LeftControl))
 controller.height = 2.0f; // revine la normal

6. Interacțiune cu obiecte (ex. „E” pentru a deschide o ușă)
void Update()
{
 if (inZona && Input.GetKeyDown(KeyCode.E))
 {
 DeschideUsa();
 }
}

2. [bookmark: _Toc22353]Third-person over-the-shoulder (TPS)
Camera urmărește personajul din spate, ușor lateral
Poți vedea tot corpul personajului
Este comun în jocurile de acțiune și aventură

Setup:
Creezi un personaj cu animator (Player)
Adaugi camera într-un script care o mișcă „smooth” după jucător

Cod simplu de cameră TPS:
public class CameraThirdPerson : MonoBehaviour
{
 public Transform target;
 public Vector3 offset = new Vector3(0, 3, -5);
 public float smoothSpeed = 0.125f;

 void LateUpdate()
 {
 Vector3 pozitieDorită = target.position + offset;
 Vector3 pozitieNetedă = Vector3.Lerp(transform.position, pozitieDorită, smoothSpeed);
 transform.position = pozitieNetedă;
 transform.LookAt(target);
 }
}
Ex: The Last of Us, Tomb Raider, Fortnite
[image: IMG_256]
Figure 5 Fortnite
3. [bookmark: _Toc6190]Third-person fixă (camera statică)
Etape în Unity:
· Creează 2 camere (CameraZona1, CameraZona2) poziționate în zone diferite ale scenei.
· Creează 2 GameObject cu componentă Box Collider (Is Trigger) → aceste zone detectează când jucătorul intră.
· Creează un script SwitchCameraZone.cs și atașează-l pe fiecare zonă de trigger.
· La început, activează doar o singură cameră (ex. CameraZona1 activă, CameraZona2 inactivă).

using UnityEngine;

public class SwitchCameraZone : MonoBehaviour
{
 public Camera cameraDeActivat;
 public Camera cameraDeDezactivat;

 private void OnTriggerEnter(Collider other)
 {
 if (other.CompareTag("Player"))
 {
 if (cameraDeActivat != null && cameraDeDezactivat != null)
 {
 cameraDeActivat.gameObject.SetActive(true);
 cameraDeDezactivat.gameObject.SetActive(false);
 }
 }
 }
}
Pe fiecare obiect „zonă de cameră”:
· cameraDeActivat → setezi camera care trebuie activată când jucătorul intră
· cameraDeDezactivat → camera care era activă înainte

Ex: Resident Evil 1, Alone in the Dark
[image: IMG_256]
Figure 6 Alone in the Dark
4. [bookmark: _Toc21646]Top-down / Isometric
Camera este sus, înclinat (isometric: unghi de ~45°)
Controlul este adesea direcțional relativ la ecran (nu la jucător)
void Update()
{
 float h = Input.GetAxis("Horizontal");
 float v = Input.GetAxis("Vertical");

 Vector3 move = new Vector3(h, 0, v).normalized;
 transform.Translate(move * speed * Time.deltaTime, Space.World);

 if (move != Vector3.zero)
 transform.forward = move; // se rotește spre direcția de mers
}
Ex: Diablo, Hades, Torchlight
[image: IMG_256]
Figure 7 Torchlight
5. [bookmark: _Toc27385]Tank Controls
Tastele W/S înainte/înapoi, A/D pentru rotire pe loc
Mișcare lentă, cinematică
Utilizate în jocuri horror pentru atmosferă
void Update()
{
 float rotatie = Input.GetAxis("Horizontal") * rotSpeed * Time.deltaTime;
 transform.Rotate(0, rotatie, 0);

 float directie = Input.GetAxis("Vertical");
 transform.Translate(Vector3.forward * directie * speed * Time.deltaTime);
}
Ex: Resident Evil (PS1), Silent Hill
[image: IMG_256]
Figure 8 Resident Evil (PS1)
6. [bookmark: _Toc11210]Point and Click (3D)
Jucătorul face clic într-un punct → personajul merge acolo
Uneori folosește navmesh pentru navigație automată
public class PointAndClick : MonoBehaviour
{
 public Camera cam;
 private UnityEngine.AI.NavMeshAgent agent;

 void Start()
 {
 agent = GetComponent<UnityEngine.AI.NavMeshAgent>();
 }

 void Update()
 {
 if (Input.GetMouseButtonDown(0))
 {
 Ray ray = cam.ScreenPointToRay(Input.mousePosition);
 if (Physics.Raycast(ray, out RaycastHit hit))
 {
 agent.SetDestination(hit.point);
 }
 }
 }
}
Ex: Telltale Games, The Walking Dead
[image: IMG_256]
Figure 9 The Walking Dead
II. [bookmark: _Toc26896]Programarea mișcărilor personajului și a camerei.
1. [bookmark: _Toc20034]Mișcarea personajului
În Unity, există 3 metode comune pentru a mișca un personaj:
	Metodă
	Descriere
	Potrivit pentru

	Transform.Translate()
	Simplu, ignoră coliziunile
	Protoptipuri rapide

	Rigidbody.MovePosition()
	Fizică realistă
	Platformere 3D, simulatoare

	CharacterController.Move()
	Controlează coliziunile, gravitația
	Jocuri 3D clasice

Exemplu: CharacterController
public class PlayerMovement : MonoBehaviour
{
 public float speed = 5f;
 public float gravity = -9.81f;
 public float jumpHeight = 2f;

 private CharacterController controller;
 private Vector3 velocity;

 void Start()
 {
 controller = GetComponent<CharacterController>();
 }

 void Update()
 {
 // Mișcare pe axele X/Z
 float x = Input.GetAxis("Horizontal");
 float z = Input.GetAxis("Vertical");

 Vector3 move = transform.right * x + transform.forward * z;
 controller.Move(move * speed * Time.deltaTime);

 // Gravitație și săritură
 if (controller.isGrounded && velocity.y < 0)
 velocity.y = -2f;

 if (Input.GetButtonDown("Jump") && controller.isGrounded)
 velocity.y = Mathf.Sqrt(jumpHeight * -2f * gravity);

 velocity.y += gravity * Time.deltaTime;
 controller.Move(velocity * Time.deltaTime);
 }
}

2. [bookmark: _Toc13070]Mișcarea camerei
Mișcarea camerei depinde de perspectiva jocului.
a) First-Person Camera (camera e capul jucătorului)
public class CameraFPS : MonoBehaviour
{
 public Transform cameraTransform;
 public float sensitivity = 100f;

 float rotX = 0f;

 void Update()
 {
 float mouseX = Input.GetAxis("Mouse X") * sensitivity * Time.deltaTime;
 float mouseY = Input.GetAxis("Mouse Y") * sensitivity * Time.deltaTime;

 rotX -= mouseY;
 rotX = Mathf.Clamp(rotX, -90f, 90f);

 cameraTransform.localRotation = Quaternion.Euler(rotX, 0f, 0f);
 transform.Rotate(Vector3.up * mouseX);
 }
}

b) Third-Person Camera cu urmărire fluidă
public class ThirdPersonCamera : MonoBehaviour
{
 public Transform target; // jucătorul
 public Vector3 offset = new Vector3(0, 3, -6);
 public float smoothSpeed = 0.1f;

 void LateUpdate()
 {
 Vector3 desiredPosition = target.position + offset;
 Vector3 smoothPosition = Vector3.Lerp(transform.position, desiredPosition, smoothSpeed);
 transform.position = smoothPosition;

 transform.LookAt(target);
 }
}

c) Orbit Camera (cu rotație liberă în jurul jucătorului)
Folosită în jocuri ca Dark Souls, Genshin Impact.
public class OrbitCamera : MonoBehaviour
{
 public Transform target;
 public float distance = 5f;
 public float xSpeed = 120f;
 public float ySpeed = 80f;
 private float x = 0f;
 private float y = 0f;

 void LateUpdate()
 {
 x += Input.GetAxis("Mouse X") * xSpeed * Time.deltaTime;
 y -= Input.GetAxis("Mouse Y") * ySpeed * Time.deltaTime;
 y = Mathf.Clamp(y, -20f, 80f);

 Quaternion rotation = Quaternion.Euler(y, x, 0);
 Vector3 position = rotation * new Vector3(0.0f, 0.0f, -distance) + target.position;

 transform.rotation = rotation;
 transform.position = position;
 }
}

III. [bookmark: _Toc17711]Detectarea coliziunilor și activarea declanșatorilor (triggers).
[bookmark: _Toc5165]Ce înseamnă „coliziune” și „trigger” în Unity?
Coliziune (collision): când două obiecte cu Collider se ating fizic (ex: jucătorul lovește un perete).
Declanșator (trigger): o zonă invizibilă (fizic), dar care detectează intrarea/ieșirea obiectelor (ex: activarea unei uși).

Componente esențiale în Unity
	Componentă
	Scop

	Collider
	Detectează coliziuni (Box, Capsule, Sphere, Mesh)

	Is Trigger
	Marchează un collider ca „traversabil” dar detectabil

	Rigidbody
	Permite fizica obiectului (necesar pentru coliziuni și triggers)

Tipuri de interacțiuni
	Tip
	Necesită Rigidbody?
	Is Trigger?
	Funcție apelată

	Coliziune fizică
	Da
	❌ False
	OnCollisionEnter

	Declanșator
	Da
	✅ True
	OnTriggerEnter

	Static vs Dynamic
	Un obiect trebuie să aibă Rigidbody pentru declanșare
	
	

Proprietăți importante
	Proprietate
	Tip
	Valori
	Descriere

	Is Trigger
	bool
	True / False
	Activează modul „declanșator”

	Rigidbody.isKinematic
	bool
	True / False
	Obiect controlat manual (folosit pentru trigger pasiv)

	Rigidbody.useGravity
	bool
	True / False
	Aplică gravitație

	Collider.enabled
	bool
	True / False
	Activează / dezactivează coliziunea

Exemple de funcții de coliziune
· Coliziune fizică
void OnCollisionEnter(Collision collision)
{
 Debug.Log("Coliziune cu: " + collision.gameObject.name);
}
· Se apelează când două obiecte se ciocnesc fizic.
· Ambele trebuie să aibă Collider. Cel puțin unul trebuie să aibă Rigidbody.
· Declanșator (trigger)
void OnTriggerEnter(Collider other)
{
 if (other.CompareTag("Player"))
 {
 Debug.Log("Jucătorul a intrat în zonă!");
 }
}
· Se folosește pentru zone invizibile sau activatori (uși, capcane, checkpoint-uri).
· Un obiect trebuie să aibă Is Trigger = true, iar celălalt un Rigidbody

[bookmark: _Toc575]Deschiderea unei uși la apropiere
public class UsaTrigger : MonoBehaviour
{
 public Animator usaAnimator;

 void OnTriggerEnter(Collider other)
 {
 if (other.CompareTag("Player"))
 {
 usaAnimator.SetBool("Deschisa", true);
 }
 }

 void OnTriggerExit(Collider other)
 {
 if (other.CompareTag("Player"))
 {
 usaAnimator.SetBool("Deschisa", false);
 }
 }
}
Necesită ca zona de activare să aibă BoxCollider cu Is Trigger = true.

[bookmark: _Toc9555]Capcană care cade
public class Capcana : MonoBehaviour
{
 public Rigidbody piatra;

 void OnTriggerEnter(Collider other)
 {
 if (other.CompareTag("Player"))
 {
 piatra.isKinematic = false;
 }
 }
}
Piatra are Rigidbody cu isKinematic = true la start.

[bookmark: _Toc14573]Colectare de obiect
public class ObiectColectabil : MonoBehaviour
{
 void OnTriggerEnter(Collider other)
 {
 if (other.CompareTag("Player"))
 {
 Debug.Log("Obiect colectat!");
 Destroy(gameObject);
 }
 }
}
[bookmark: _Toc31124]Cum configurăm un trigger în Inspector:
1. [bookmark: _Toc12144]Objectul A (ex: zonă de activare):
Box Collider → bifează Is Trigger
fără Rigidbody sau cu isKinematic = true (dacă se mișcă)
2. [bookmark: _Toc10199]Objectul B (ex: jucătorul):
Collider
Rigidbody (obligatoriu pentru declanșare)

[bookmark: _Toc11360]Best practices
· Folosește CompareTag() în loc de other.tag == "X" pentru performanță.
· Grupați logic trigger-ele: Tag = TriggerZone, Layer = Interactables
· Pentru obiecte care nu trebuie să „cadă”, folosește isKinematic = true
· Poți folosi OnTriggerStay() dacă vrei un efect care continuă (ex: regenerare în zonă)

[bookmark: _Toc25209]Tipuri de funcții de trigger
	Funcție
	Descriere

	OnTriggerEnter(Collider other)
	Se apelează când obiectul intră în trigger

	OnTriggerStay(Collider other)
	Se apelează în fiecare frame cât timp este în trigger

	OnTriggerExit(Collider other)
	Se apelează când obiectul iese din trigger

IV. [bookmark: _Toc3650]Crearea de interacțiuni între obiecte în funcție de input.
[bookmark: _Toc5406]Ce înseamnă "interacțiune în funcție de input"?
Este momentul în care jucătorul declanșează o acțiune apăsând o tastă sau un buton, în apropierea unui obiect. Exemplu: apăsăm E pentru a deschide o ușă sau a vorbi cu un personaj.
Exemple comune de interacțiuni:
	Tip interacțiune
	Input
	Efect

	Deschidere ușă
	E
	Rulează animație

	Colectare obiect
	E sau auto
	Dispare obiectul, apare în inventar

	Dialog cu NPC
	E
	Se deschide cutie de dialog

	Activare panou
	F
	Se aprinde lumină / pornește mecanism

	Împingere obiect
	Mouse0
	Se aplică forță

[bookmark: _Toc17550]Exemplu simplu: Apăsare E pentru a deschide ușa
Etape:

Obiectul jucător are Tag = Player

Zona ușii are BoxCollider → Is Trigger = true

Se creează un script InteractiuneUsa.cs

public class InteractiuneUsa : MonoBehaviour
{
 public Animator usaAnimator;
 private bool esteInZona = false;

 void Update()
 {
 if (esteInZona && Input.GetKeyDown(KeyCode.E))
 {
 usaAnimator.SetTrigger("Deschide");
 }
 }

 void OnTriggerEnter(Collider other)
 {
 if (other.CompareTag("Player"))
 {
 esteInZona = true;
 }
 }

 void OnTriggerExit(Collider other)
 {
 if (other.CompareTag("Player"))
 {
 esteInZona = false;
 }
 }
}
Animatorul trebuie să aibă un trigger numit „Deschide”

[bookmark: _Toc543]Variante de detecție a obiectului:
1. Cu Trigger (recomandat)
Necesită BoxCollider (Is Trigger = true)
Poate detecta intrarea/ieșirea
2. Cu Raycast (pentru jocuri FPS)
void Update()
{
 if (Input.GetKeyDown(KeyCode.E))
 {
 Ray ray = new Ray(Camera.main.transform.position, Camera.main.transform.forward);
 if (Physics.Raycast(ray, out RaycastHit hit, 3f))
 {
 if (hit.collider.CompareTag("Interactabil"))
 {
 hit.collider.GetComponent<ActiuneInteractiva>().Activeaza();
 }
 }
 }
}
Folosit în: Amnesia, Skyrim, Outlast

✅ Update() este apelat în fiecare frame → nu folosi cod greu acolo
✅ OnTriggerEnter/Exit se folosesc doar cu Collider + Rigidbody
✅ Raycast necesită Collider pe obiectele țintă
✅ Folosește CompareTag() pentru performanță
V. [bookmark: _Toc24061]Utilizarea tag-urilor și layer-elor pentru gestionarea interacțiunii.
[bookmark: _Toc25637]Ce sunt tag-urile în Unity?
Tag = o etichetă text atașată unui GameObject
Ajută la identificarea rapidă a obiectelor (ex: „Player”, „Enemy”, „Interactable”)
Pot fi verificate în cod: CompareTag("Player")

void OnTriggerEnter(Collider other)
{
 if (other.CompareTag("Enemy"))
 {
 Debug.Log("Jucătorul a intrat în contact cu inamicul!");
 }
}

[bookmark: _Toc15894]Cum adaugi un tag în Unity:
Selectează obiectul

În Inspector → Tag → Add Tag…

Creează un nou tag (ex: „Interactable”)

Apoi revino și setează tag-ul pe obiectul dorit

[bookmark: _Toc32251]Best practices cu tag-uri
	Situație
	Tag recomandat

	Jucător
	Player

	Inamic
	Enemy

	Obiect interactiv
	Interactable

	Proiectile
	Projectile

	Declanșator zonă
	TriggerZone

[bookmark: _Toc23636]Ce sunt layer-ele în Unity?
Layer = nivel logic folosit pentru:
Filtrarea coliziunilor
Selectarea obiectelor pentru camere și Raycast
Unity oferă 32 layer-e (primele 8 rezervate)

Cum setezi un Layer:
Selectează obiectul → Inspector → Layer
Alege Add Layer… pentru a crea unul nou (ex: „EnemyLayer”)
Aplică Layer-ul pe obiect
[bookmark: _Toc4512]Exemple de utilizare Layer:
1. Filtrarea Raycast-urilor
int mask = LayerMask.GetMask("Interactable");

if (Physics.Raycast(ray, out RaycastHit hit, 3f, mask))
{
 Debug.Log("Ai dat click pe un obiect interactiv!");
}
Acest cod va detecta doar obiectele din layer-ul Interactable
2. [bookmark: _Toc16739]Filtrarea coliziunilor în proiect
Merge la:
Edit → Project Settings → Physics → Layer Collision Matrix

Poți spune: „Obiectele din layer Player nu colisionează cu cele din layer Pickup”.
3. [bookmark: _Toc16662]Camere care văd doar anumite layer-e
Selectezi o cameră
În Culling Mask alegi doar layer-ele pe care vrei să le vadă
Utile pentru mini-mapă, efecte speciale etc

Bibliografie recomandata
1. Hocking, J. (2023). Learning C# by Developing Games with Unity 2023. 8th ed. Packt Publishing.
2. Thorn, A. (2023). Mastering Unity Scripting. 2nd ed. Packt Publishing.
3. Unity Technologies (2025). Input System Documentation (Classic and New). Disponibil la: https://docs.unity3d.com/Manual/Input.html
4. Unity Technologies (2025). CharacterController. Disponibil la: https://docs.unity3d.com/ScriptReference/CharacterController.html
5. Unity Technologies (2025). Collision and Trigger Events. Disponibil la: https://docs.unity3d.com/Manual/CollidersOverview.html
6. Unity Technologies (2025). Tags and Layers. Disponibil la: https://docs.unity3d.com/Manual/Tags.html
7. Unity Technologies (2025). Camera Control and Perspective. Disponibil la: https://docs.unity3d.com/Manual/class-Camera.html
8. Brackeys (2021). First Person Controller in Unity – Tutorial. [video]. Disponibil la: https://www.youtube.com/watch?v=_QajrabyTJc
9. Unity Technologies (2025). Raycasting with LayerMask. Disponibil la: https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
image5.png
Peaaxtop urposoro ynpasn... (

(@)

Moo
croemss

b

by

(e]

(G

)

Cupuer

Comparam.

image6.jpeg

image7.png
Open / Dismiss Social Menu cA"g‘lg}Fm‘D Y
Scorestreaks |
Pause / Dismiss | Z3
Menu
Scoreboard/
Objectives
Sprint/
Steady Aim
(Prone)
Forward [D = Interact

= Crouch/Slide

. Reload 5
> |or

or Mouse Wheel Press
for Lethal Equipment

. = Use Field UpGrade Mouse Wheel Up for Mouse Wheel Down for
RERtvearas Previous Weapon
@
= Push to Talk WUPUES M s & @1F . or Mouse Button 5
for Melee for Tactical EQquipment

Backword

image8.png
General

Graphics

Move Forward
Move Backward
Strafe Left
Strafe Right
Turn Left

Turn Right
Crouch

Use

Run

Toggle Camcorder
Toggle Nightvision
Lean Left

Lean Right

Zoom Camera In
Zoom Camera Out
Reload Batteries
Jump

Show Escape Menu

o> un=

Cc
LEFT MOUSE BUTTON
LEFT SHIFT
RIGHT MOUSE BUTTON
F
Q
E
MOUSE SCROLL UP
MOUSE SCROLL DOWN
R
SPACEBAR
ESCAPE

Back

Restore Defaults

Apply

image9.jpeg
Zum Bewegen il ' Zum Zielen
ziehen - { irgendwohin

= hen

-+ Zum Angreifen

tippen - irgendwo tippen

Zum autom. Laufen

Wechsel zu Baumodus
Zum Auswihlen tippen Zum Nachladen tippen

o

image10.jpeg

image11.png

image12.png
L2 R2
11 Select ~ Start R1

Square
Triangle

D-Pad Circle
X

Left Stick / L3 Right Stick / R3

image13.jpeg
Pchnij:
Polka na ksigzki

image1.png
MINISTERUL EDUCATIEL
$1 CERCETARILL
AL REPUBLICI] MOLDOVA

image2.png

image3.jpeg

image4.png
nvatam acasa,
excelam global!

