
Lab 2

Manager de parole (C++)

Manageru de parole creat are o parolă unică de acces la toată baza de date care este setată la

prima execuţie a programului, şi trebuie să fie mai mare de 7 caractere (fig. 4.1).

Parola master creată este salvată într-un fişier de tip .dat “Master Password.dat” utilizîndu-

se cel mai simplu algoritm de criptare Cezar.

Fig. 4.1

La execuţiea ulterioară a programului ni se cere să întroducem parola master pentru avea

acces la meniul programului (fig. 4.2).

Fig. 4.2

După logare pe ecran aprare un meniu ce ne oferă opţiunile: de introducere, afişare a

datelor, ştergerea bazei de date şi generarea unei parole (fig. 4.3).

Fig. 4.3

La tastarea tastei (1) accesăm funcţia de introducere a datelor. Aici suntem întrebaţi cîte

conturi dorim să creăm apoi oferindu-ne posibilitatea să introducem denumirea contului, numele

de utilizator şi parola. Datele sunt salvate într-un fişier de tip .txt “Accounts.txt” criptate cu cifrul

Cezar(fig. 4.4).

Fig. 4.4

La tastarea tastei (2) accesăm funcţia de afişare a datelor. Aici sunt decriptate datele din

fişierul “Accounts.txt” (fig. 4.5).

Fig. 4.5

La tastarea tastei (3) accesăm funcţia de ştergere a conţinutului fişierului

“Accounts.txt”(fig. 4.6).

Fig. 4.6

La tastarea tastei (4) accesăm funcţia de genererare a parolei, lungimea căreia este

introdusă de la tastatură. Parola este salvată în fişierul “Password.txt” (fig. 4.7).

Fig. 4.7

La tastarea tastei (0) ieşim din program.

Funcţii utilizate în program

 string encrypt(string s_input) – returnează caracterele criptate cu cifrul Cezar,
deplasarea 6 poziţii

 string decrypt(string encrypted) – returnează caracterele decriptate cu cifrul Cezar,
deplasarea 6 poziţii

 void encrypt_other(string &s_input) – returnează caracterele criptate cu cifrul Cezar,
deplasarea 4 poziţii

 void decrypt_other(string &encrypted) – returnează caracterele decriptate cu cifrul
Cezar, deplasarea 4 poziţii

 int startProgram() – funcţie de acces la meniu, crează parola master cu ajutorul
căruia execută logarea

 void outputLine(string account, string username, string password) – formatează
afişare datelor, este apelată în funcţia readData()

 void insert_id() – funcţie de introducere a datelor, ele sunt slavate în “Accounts.txt”

 void readData() – citirea datelor slavate în “Accounts.txt”

 void cleanData() – ştergerea “Accounts.txt”
 void passGenerator() – funcţia de genererare a parolei, este salvată în fişierul

“Password.txt”

 void userChoice() – meniu, apel la funcţiile insert_id(), readData(), cleanData(),
passGenerator()

Listingul programului Password Manager.cpp

#include <iostream>
#include <cstring>
#include <fstream>
#include <cstdlib>
#include <iomanip>
#include <ctime>

using namespace std;
#include " Functions.h"

int main()
{
 startProgram();
 userChoice();

 cin.ignore(100, '\n');
 cin.get();
 return 0;
}

Functions.h

const string Version_Num = "1.0 Beta"; //universal version number
string OPEN_PASS;
bool FIRST_OPEN; // variable controls weither or not the user has already opened the
program
int temp, len, i;
string encrypted, decrypted;
string account,username,password;

string encrypt(string s_input)

{
 int temp=s_input.size();
 char input[100];
 for (int a=0;a<=temp;a++)

 {
 input[a]=s_input[a];

 }
 len = strlen(input);
 for (i=0; i<len; i++)
 {
 input[i] = input[i]-6;
 }
 for (i=0; i<len; i++)
 {
 encrypted += input[i];
 }
 cout << "\n";

 return encrypted;

}

string decrypt(string encrypted)

{
 int temp=encrypted.size();
 char input[100];
 for (int a=0;a<=temp;a++)

 {
 input[a]=encrypted[a];
 }

 len = strlen(input);
 for (i=0; i<len; i++)
 {
 input[i] = input[i]+6;
 }

 for (i=0; i<len; i++)
 {
 decrypted += input[i];
 }
 cout << "\n";
 return decrypted;
}

void encrypt_other(string &s_input)

{

 int temp=s_input.size();

 char input[100];
 for (int a=0;a<=temp;a++)
 {
 input[a]=s_input[a];
 }

 len = strlen(input);
 for (i=0; i<len; i++)
 {
 input[i] = input[i]-4;
 }
 s_input = "";
 for (i=0; i<len; i++)
 {
 s_input+= input[i];
 }
 cout << "\n";
 }

void decrypt_other(string &encrypted)

{
 int temp=encrypted.size();
 char input[100];
 for (int a=0;a<=temp;a++)

{
 input[a]=encrypted[a];
 }

 len = strlen(input);
 for (i=0; i<len; i++)
 {
 input[i] = input[i]+4;
 }
 encrypted = "";
 for (i=0; i<len; i++)
 {
 encrypted += input[i];
 }
 cout << "\n";
}

 int startProgram()

{
 // ifstream constructor opens file

 ifstream outMasterPassword("Master Password.dat", ios::in);

 if (!outMasterPassword)
 {
 FIRST_OPEN = true;
 }
 if (FIRST_OPEN == true)
 {
 cout << "Welcome to Password Manager" << "\n"
 << "Version: " << Version_Num << "\n"
 << "Set your password (8 characters or more)" <<endl;

 cin >> OPEN_PASS; //sets your password

 while (OPEN_PASS.length() < 7)
 {
 cout << "Your Password must be 8 or more characters. Try again!"
<< endl;
 cin >> OPEN_PASS;
 }

 // ofstream constructor opens file
 ofstream outMasterPassword("Master Password.dat", ios::out);

 // exit program if unable to create file
 if (!outMasterPassword)
 {
 cerr << "We are very sorry but the password file cannot be
found/written to :(\nMake sure the current volume your running this from supports file
writing\n" << endl;

 exit(1);
 }

 encrypt(OPEN_PASS);
 outMasterPassword << encrypted << endl;
 cout << "Restart the program to finish the setup." << endl;
 }
 else if (FIRST_OPEN == false)
 {
 ifstream outMasterPassword("Master Password.dat", ios::in);
 if (!outMasterPassword)
 {
 cerr << "File could not be opened" << endl;

 exit(1);
 }
 outMasterPassword >> encrypted;
 decrypt(encrypted);

 string temp_input;

 cout << "Welcome back to Password Manager" << "\n"
 << "Version: " << Version_Num << "\n"
 << "Enter your password: " ;

 cin >> temp_input;
 while (temp_input != decrypted) //compares user input with the saved
password
 {
 cout<<"I'm sorry but the password was incorrect."<<endl;
 cout<<"Enter your password again."<<endl;
 cin >> temp_input;
 }
 cout<<"You are now logged in.\n";
 system("pause");
 }
}

void outputLine(string account, string username, string password)
{
 cout << left << setw(10) << account << setw(10) << username << setw(13) <<
password ;
 }

 void insert_id()
{
 // ofstream constructor opens file
 ofstream outAccountFile ("Accounts.txt", ios::out | ios::app);

 // exit program if unable to create file
 if (!outAccountFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 }
 int a;

 cout << "\nHow many accounts you want to create:";

 cin>>a;
 cout<<endl;

 for(int i=0;i<a; i++)
 {
 cout<<"Account:"; cin>>account;
 cout<<"Username:"; cin>>username;
 cout<<"Password:"; cin>>password;

 // read username and password from cin, then place in file
 encrypt_other(account);
 encrypt_other(username);
 encrypt_other(password);
 //encrypts text before its written to file
 outAccountFile << account <<" "<< username <<" "<< password <<endl;
 cout << "The account has been saved.\n" << endl;
 }
 }

void readData()

 {
 // ifstream constructor opens the file
 ifstream inAccountsFile("Accounts.txt", ios::in);

 // exit program if ifstream could not open file
 if (!inAccountsFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 }

 cout << left << setw(10) << "Account "<< setw(10) << "Username" << setw(13) <<
"Password" << fixed << showpoint;

 // display each account in file
 while (inAccountsFile >> account >> username >> password)
 {
 decrypt_other(account);
 decrypt_other(username);
 decrypt_other(password);
 outputLine(account, username, password);
 }
 cout<<endl<<endl;
 system("pause");

}

void cleanData()

{
 cout <<"\n\t All stored data was deleted.\n" << endl;
 remove("Accounts.txt");
 system("pause");
}

void passGenerator()

{
 ifstream Pass;
 ofstream temp;
 Pass.open("Password.txt");
 temp.open("temp.txt");

 int length;
 string pass =
 "0123456789"
 "!@#$%^&*"
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 "abcdefghijklmnopqrstuvwxyz";
 string password;
 srand(time(NULL));
 cout<<" How long do you want your passowrd? (7-14): ";
 cin>>length;
 cout<<endl;
 cout<<" Your password is: ";
 temp<< "Password ";

 for(int i=0; i<length; i++)
 {
 password[i] = pass[rand() % 70];
 cout<<password[i];

 temp<<password[i];
 }
 cout<<endl;

 Pass.close();
 temp.close();
 remove("Password.txt");
 rename("temp.txt", "Password.txt");

 system("pause");
 }

void userChoice() //meniu

 {
 if (FIRST_OPEN == false)
 {
 int choice;

 while(choice){
 system("cls");
 cout << "\t\t Control Panel" << endl;
 cout << "\t (1) Insert Data " << endl;
 cout << "\t (2) Read Stored Data" << endl;
 cout << "\t (3) Delete Stored Data" << endl;
 cout << "\t (4) Password Generator" << endl;
 cout << "\t (0) Exit" << endl;
 cout << "Choice:";
 cin >> choice;
 system("cls");

 switch(choice){
 case 1: insert_id();break;
 case 2: readData(); break;
 case 3: cleanData();break;
 case 4: passGenerator();break;
 case 0: exit(1);
 default: cout<<"\a Enter your choice again.\n\n";
 break;
 }
 }
 }

 }

